Virtual Analog Modeling of Nonlinear Musical Circuits

نویسندگان

  • Stefano D'Angelo
  • Stefano Zambon
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Stefano D'Angelo Name of the doctoral dissertation Virtual Analog Modeling of Nonlinear Musical Circuits Publisher School of Electrical Engineering Unit Department of Signal Processing and Acoustics Series Aalto University publication series DOCTORAL DISSERTATIONS 158/2014 Field of research Audio Signal Processing Manuscript submitted 2 June 2014 Date of the defence 21 November 2014 Permission to publish granted (date) 30 September 2014 Language English Monograph Article dissertation (summary + original articles) Abstract Recent advances in semiconductor technology eventually allowed for affordable and pragmatic implementations of sound processing algorithms based on physical laws, leading to considerable interest towards research in this area and vast amounts of literature being published in the last two decades. As of today, despite the efforts invested by the academic community and the music technology industry, new or better mathematical and computational tools are called for to efficiently cope with a relatively large subset of the investigated problem domain. This is especially true of those analog devices that inherently need to be studied by lumped nonlinear models. This research is, in this sense, directed towards both general techniques and specific problems. The first part of this thesis presents a generalization of the wave digital filter (WDF) theory to enable interconnections among subnetworks using different polarity and sign conventions. It proposes two new non-energic two-port WDF adaptors, as well as an extension to the definitions of absorbed instantaneous and steady-state pseudopower. This technique eventually removes the need to remodel subcircuits exhibiting asymmetrical behavior. Its correctness is also verified in a case study. Furthermore, a novel, general, and non-iterative delay-free loop implementation method for nonlinear filters is presented that preserves their linear response around a chosen operating point and that requires minimal topology modifications and no transformation of nonlinearities. In the second part of this work, five nonlinear analog devices are analyzed in depth, namely the common-cathode triode stage, two guitar distortion circuits, the Buchla lowpass gate, and a generalized version of the Moog ladder filter. For each of them, new real-time simulators are defined that accurately reproduce their behavior in the digital domain. The first three devices are modeled by means of WDFs with a special emphasis on faithful emulation of their distortion characteristics, while the last two are described by novelly-derived systems in Kirchhoff variables with focus on retaining the linear response of the circuits. The entirety of the proposed algorithms is suitable for real-time execution on computers, mobile electronic devices, and embedded DSP systems.Recent advances in semiconductor technology eventually allowed for affordable and pragmatic implementations of sound processing algorithms based on physical laws, leading to considerable interest towards research in this area and vast amounts of literature being published in the last two decades. As of today, despite the efforts invested by the academic community and the music technology industry, new or better mathematical and computational tools are called for to efficiently cope with a relatively large subset of the investigated problem domain. This is especially true of those analog devices that inherently need to be studied by lumped nonlinear models. This research is, in this sense, directed towards both general techniques and specific problems. The first part of this thesis presents a generalization of the wave digital filter (WDF) theory to enable interconnections among subnetworks using different polarity and sign conventions. It proposes two new non-energic two-port WDF adaptors, as well as an extension to the definitions of absorbed instantaneous and steady-state pseudopower. This technique eventually removes the need to remodel subcircuits exhibiting asymmetrical behavior. Its correctness is also verified in a case study. Furthermore, a novel, general, and non-iterative delay-free loop implementation method for nonlinear filters is presented that preserves their linear response around a chosen operating point and that requires minimal topology modifications and no transformation of nonlinearities. In the second part of this work, five nonlinear analog devices are analyzed in depth, namely the common-cathode triode stage, two guitar distortion circuits, the Buchla lowpass gate, and a generalized version of the Moog ladder filter. For each of them, new real-time simulators are defined that accurately reproduce their behavior in the digital domain. The first three devices are modeled by means of WDFs with a special emphasis on faithful emulation of their distortion characteristics, while the last two are described by novelly-derived systems in Kirchhoff variables with focus on retaining the linear response of the circuits. The entirety of the proposed algorithms is suitable for real-time execution on computers, mobile electronic devices, and embedded DSP systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Simulation of Substrate Noise in Mixed-Signal Circuits Applied to a Special VCO

The mixed-signal circuits with both analog and digital blocks on a single chip have wide applications in communication and RF circuits. Integrating these two blocks can cause serious problems especially in applications requiring fast digital circuits and high performance analog blocks. Fast switching in digital blocks generates a noise which can be introduced to analog circuits by the common su...

متن کامل

Behavioral Modeling and Simulation of Semiconductor Devices and Circuits Using VHDL-AMS

During the past few years, a lot of work has been done on behavioral models and simulation tools. But a need for modeling strategy still remains. The VHDL-AMS language supports the description of analog electronic circuits using Ordinary Differential Algebraic Equations (ODAEs), in addition to its support for describing discrete-event systems. For VHDL-AMS to be useful to the analog design ...

متن کامل

The Frequency Domain Behavioral Modeling and Simulation of Nonlinear Analog Circuits and Systems

LUNSFORD II, PHILIP J. The Frequency Domain Behavioral Modeling and Simulation of Nonlinear Analog Circuits and Systems. (Under the direction of Michael B. Steer.) A new technique for the frequency–domain behavioral modeling and simulation of nonautonomous nonlinear analog subsystems is presented. This technique extracts values of the Volterra nonlinear transfer functions and stores these value...

متن کامل

A Multi-companding Algorithm for Analog Behavioral Modeling via Wavelet Collocation Method

In this paper, we develop a wavelet collocation method with multi-companding for behavioral modeling of analog circuits. In the multi-companding procedure, the nonlinear companding algorithm is developed to control the error distribution continuously, while the adaptive scheme is employed to reduce the number of used wavelets. Consequently, the proposed multi-companding algorithm can not only m...

متن کامل

MOCA ARM: Analog Reliability Measurement based on Monte Carlo Analysis

Due to the expected increase of defects in circuits based on deep submicron technologies, reliability has become an important design criterion. Although different approaches have been developed to estimate reliability in digital circuits and some measuring concepts have been separately presented to reveal the quality of analog circuit reliability in the literature, there is a gap to estimate re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014